Metal Isotope Effect on the Raman Spectrum of Solid $[Zn(NH_3)_4]I_2$

By JAMES TAKEMOTO and KAZUO NAKAMOTO*

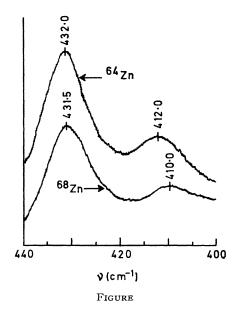
(The Todd Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53233)

Summary The A_1 and F_2 Zn-N stretching vibrations of the Raman spectrum of solid $[Zn(NH_3)_4]I_2$ have been assigned by using the metal isotope technique: the A_1 mode shows almost no dependence on the isotopic substitution of the central metal atom, whereas the F_2 mode is metal isotope-sensitive.

WE have demonstrated¹ that the use of heavy-metal isotopes provides a unique method to assign the metalligand vibrations in the i.r. spectra of a variety of coordination compounds. We have now applied the metal isotope technique to the Raman spectrum of solid $[Zn(NH_3)_4]I_2$.

Theoretically, two metal-nitrogen stretching vibrations $(A_1 \text{ and } F_2)$ should be Raman-active for tetrahedral (T_d) ammine complexes. The totally symmetric A_1 mode involves no motion of the central metal atom and should thus be independent of the ⁶⁴Zn-⁶⁸Zn isotopic substitution. On the other hand, the F_2 mode involves the motion of the central metal atom and should be sensitive to the isotopic substitution.

We have prepared [64Zn(NH₃)₄]I₂ and [68Zn(NH₃)₄]I₂ (isotopic purities, ⁶⁴Zn, 99.66% and ⁶⁸Zn, 98.50%) on a milligram scale, and measured their Raman spectra on a Spex Model 1401 Raman spectrophotometer equipped with an Argon ion laser. The instrumental resolution and reproducibility are 0.5 cm⁻¹. The Figure shows an actual tracing of the spectra obtained and the Table lists the


Raman-active Zn-N stretching frequencies and isotopic shifts for $[Zn(NH_3)_4]\hat{I}_2 (cm^{-1})$

64Zn	⁶⁸ Zn	Shift
432.0	431.5	0.5
412.0	410.0	$2 \cdot 0$

observed frequencies in the Zn-N stretching region.² These frequencies were determined by multiple scans over the desired bands.

As can be seen from the Table, the 432.0 cm⁻¹ band gives a shift of 0.5 cm^{-1} which is within the experimental error. whereas the 412.0 cm⁻¹ band gives a large shift of 2.0 cm⁻¹. Thus, it is possible to assign the former to the A_1 and the latter to the F_2 species based on the observed isotopic shifts alone. This assignment has also been confirmed by the observation that the 427 cm⁻¹ band of approximately 4M-ammonia solution of $[Zn(NH_3)_4]I_2$ is strongly polarized.

Other vibrations such as NH3 stretching, NH3 degenerate and symmetric deformation, and NH₃ rocking modes³ do not involve the motion of the metal atom and show only

small (maximum 0.8 cm⁻¹) isotopic shifts on ⁶⁴Zn-⁶⁸Zn substitution. A more detailed discussion on the i.r. and Raman spectra of [64Zn(NH₃)₄]I₂ and its 68Zn and ND₃ analogues will be presented in separate papers. The present results are sufficient, however, to show the feasibility of this new technique in assigning the metal-ligand vibrations in the Raman spectra of co-ordination compounds.

This work was supported by an ACS-PRF unrestricted research grant.

(Received, June 15th, 1970; Com. 925.)

¹ K. Nakamoto, K. Shobatake, and B. Hutchinson, Chem. Comm., 1969, 1451; K. Shobatake and K. Nakamoto, J. Amer. Chem. Soc., 1970, 92, 3332; B. Hutchinson, J. Takemoto, and K. Nakamoto, *ibid.*, p. 3335; K. Shobatake and K. Nakamoto, *ibid.*, p. 3339.
² L. Sacconi, A. Sabatini, and P. Gans, *Inorg. Chem.*, 1964, 3, 1772.
³ K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds," Wiley, New York, 1963, p. 143.